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DeepGraphlet: Estimating Local Graphlet Frequencies for
Billion-scale Graphs
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ABSTRACT
Local graphlet frequencies (LGF) indicate the distribution of graphlets

(i.e., small connected subgraph patterns) adjacent to each node in

the network. Accordingly, it is emerging as a powerful tool for

characterizing the local topology structures of networks and has

been widely applied in various domains, ranging from biology to

network science. However, the counting of local graphlets is as-

sociated with prohibitive computational costs in the context of

large real-world graphs, and thereby represents a long-standing

research problem. Accordingly, in this paper, we make the first

attempt to compute LGF for billion-scale graphs by transforming

the task into a machine learning problem. To achieve this, we pro-

pose a multi-layer graph neural network (GNN) -based framework:

DeepGraphlet. In more detail, we propose the novel k-tuple features
and theoretically prove that GNNs with it can exceed the bound

of the expressiveness for capturing graph structural information.

Moreover, DeepGraphlet utilizes both the cross- and inner-order

relationships among graphlets. Furthermore, a multitask mecha-

nism is proposed to utilize the graphlet relationships better and

to accelerate the computation by learning different-order LGFs si-

multaneously in a unified framework. When used together, these

strategies guarantee the scalability of DeepGraphlet. To empiri-

cally validate the proposed model, we conduct experiments on

nine graphs. Experimental results show that our approach is not

only able to improve the estimation accuracy compared with other

approximate algorithms (+80% on average), but also achieves sig-

nificant speedup (e.g., 749x speedup on a hundreds of millions-

scale graph). Furthermore, the experimental results illustrate Deep-

Graphlet’s ability to handle billion-scale graphs. Our code is avail-

able at https://github.com/deepgraphlet/DeepGraphlet.
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•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Local graphlets of a given network refer to small induced subgraph

patterns adjacent to each node (see Figure 1 for examples). Unlike

some global network properties, such as degree distribution, the

frequencies of local graphlets (i.e., the normalized number of each

graphlet associated with a particular node) provide an insightful

characterization of both individual nodes and the topological struc-

tures of networks. Therefore, local graphlet frequencies (LGF) has

been widely applied in various domains, including network sci-

ence [3, 22, 43], biological science [23], anomaly detection [45], and

social networks [37]. For example, LGF can be used to compute

general graph features, such as local clustering coefficients [46],

and analyze the collective dynamics of small-world networks [39].

However, counting local graphlets is a computationally intensive

task. The time complexity of the straightforward method of enumer-

ating a k-order graphlet is 𝑂 ( |𝑉 |𝑘 ), where |𝑉 | denotes the number

of nodes. Nowadays, in real-world applications, graphs can reach

hundreds of millions of nodes and billions of edges, or even more.

Thus, the time complexity of processing such large graphs is often

unfeasibly enormous.

Due to its importance, graphlet counting has attracted a signifi-

cant amount of research interest, including both exact and approxi-

mate algorithms. For exact algorithms, someworks compute k-order

graphlets by enumerating all subgraphs of the same order [24, 41].

In an attempt to accelerate the computation, some studies have ana-

lyzed the relations between different graphlets [1, 15, 28]. However,

the problem of high time complexity on large graphs remains. As for

approximate algorithms, most existing studies in this area address

global graphlet counting [30], the occurrence of graphlets in the

whole graph, while only few works deal with local graphlets [2, 10].

Still, these methods suffer from their high time complexity, which

has a power relation with the order of local graphlets. Therefore,

these methods is difficult to scale to large graphs for high-order

graphlets. In practice, most existing algorithms can only deal with

3- or 4-order graphlets for million-scale graphs.

Accordingly, in this paper, we focus on approximating node-

centric LGF for billion-scale graphs. To achieve this, we propose to

turn the LGF computing problem into a learning problem. Generally

speaking, our idea is to use an inductive graph neural network to

map the node representations into LGF. In the training phase, we

minimize the difference between the LGF predicted by our model

and the ground truth calculated by the exact algorithm on small

graphs. When it comes to inference, we use the trained model

directly on new large-scale graphs to compute the LGF.

The problem of computing LGF for large graphs via GNN is non-

trivial and associated with many challenges. First, LGF is highly

1
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Figure 1: Illustration of 3-, 4- and 5-order graphlets.

relevant to the graph structural information. However, as discussed

in many existing works, the expressive power of GNNs for graph

structural information is limited [11, 42]. Thus, the question of

how to exceed the limitation of GNNs and better capture the local

structural information around nodes remains a crucial challenge

for us. Secondly, the exact counting algorithm has shown that the

relationships between different graphlets can inherently make the

counting process more efficient [1]. Therefore, making deep neural

models fully utilize these graphlets relationships carries abreast

challenges and opportunities to us. Thirdly, as mentioned above,

counting local graphlets is a computationally intensive task. Similar

works that adopt graph neural networks for graphlet counting [11,

35] are unable to handle large graphs because their time complexity

is super-linear to the number of nodes. We aim to accelerate the

computation and enable the GNN-based model to handle billion-

scale graphs.

To address the above challenges, we propose a multi-layer GNN-

based framework, named DeepGraphlet, with three novel mecha-

nisms. First, we propose a novel k-tuple feature for each node as the

initial identifier, which equips DeepGraphlet with more graph struc-

tural information. We theoretically prove that GNNs with k-tuple

features exceed the bound of general GNNs’ expressive power in

the graph isomorphism problem — the 1-order Weisfeiler-Lehman

graph isomorphism test (1-WL). We propose an efficient algorithm

for extracting the k-tuple features with the time complexity linear

in |𝑉 |+ |𝐸 |. Secondly, in order to capture and utilize cross- and inner-
order relationships among graphlets, DeepGraphlet incorporates

GNNs with a hierarchical structure. Thirdly, the GNNs are efficiently

trained by a multi-task mechanism, which enables different-order

LGFs can be inferred simultaneously in a unified framework and

thus accelerates the computation. Another thing worth noting is

that, given the properties of GNNs, the model’s parameters are inde-

pendent of the graph scale; hence, the proposed model is naturally

inductive.

We conduct experiments on nine real-world graphs with num-

bers of edges ranging from millions to billions. The results demon-

strate that DeepGraphlet achieves the best results when it comes

to the computation of different-order LGFs in nearly all settings.

In terms of effectiveness, compared with several baselines, Deep-

Graphlet can significantly improve the estimation accuracy (+80%

on average). As for efficiency, DeepGraphlet can achieve significant

speedup compared to the baseline (e.g., 749x speedup on a hundreds

of millions-scale graph). We further compute LGF on graphs with

billions of edges, achieving 59x speedup compared to sampling

algorithms. It is worthwhile to highlight our contributions as

1) We turn the node-centric LGF computing task into a learning

problem, such that an inductive model can be applied to

estimating different-order LGFs on billion-scale graphs.

2) We propose a novel framework, DeepGraphlet, which is

equipped with three novel mechanisms to guarantee its esti-

mation performance and scalability. We theoretically prove

that our model, with the help of the proposed k-tuple fea-

tures, can exceed the bound of the expressive power of gen-

eral GNNs.

3) We conduct experiments on nine real-world graphs with

numbers of edges ranging from millions to billions. The

results prove that DeepGraphlet has high effectiveness and

efficiency.

2 RELATEDWORKS
2.1 Graphlet Counting Algorithms

Exact graphlet counting. Exact graphlet counting is a computa-

tionally intensive task. To solve the challenge of computational

time complexity, many works have been developed to acceler-

ate the computation. Some works focus only on 3-order graphlet

counting [6, 19, 34, 36], while others aim at achieving higher-

order graphlet computing. MFINDER [24] and FANMOD [41] are

enumeration-based backtracking algorithms. ORCA [15] analyzes

the relationships among different graphlets for accelerating compu-

tation. PGD [1] proposes an efficient algorithm that can compute 3-

and 4-order graphlet counts and scale to large graphs with millions

of nodes. Escape [28] allows for the computation of 3-, 4- and 5-

order global graphlet counts on tens of millions of edges. However,

as discussed above, the problem of high time complexity on large

graphs remains.

Approximate graphlet counting. Approximate algorithms are

developed to accelerate graphlet counting further. Most of these

works estimate global graphlets [26]. Wernicke [40] uses random

enumeration developed based on exact enumeration. GUISE [7]

uses random walk and MCMC sampling method, while Motivo [9]

uses color coding and adaptive sampling to count graphlets faster.

Compared with works focused on global graphlet counting, rela-

tively few works aim at local graphlet counting due to its difficulty.

Ahmed [2] approximates 3- and 4-order edge-centric local graphlet

counts, while Chen [10] can approximate 3- and 4-order node-

centric local graphlet counts. To the best of our knowledge, no

existing local graphlet counting approximate algorithms can deal

with 5-order or higher-order node-centric local graphlets counting

in large graphs. Some global graphlet counting algorithms can be

2
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Figure 2: The structure of the DeepGraphlet framework. An example of computing up to 5-order LGF.

transformed into local graphlet counting. However, to accurately

estimate local graphlets around each graph node, these algorithms

require much more sampling times than global estimation. Thus,

the transformed global graphlet counting algorithm is not feasible.

In summary, efficient higher-order graphlet counting remains a

challenge for us.

2.2 Graph Neural Networks
In recent years, GNNs has attracted substantial research inter-

ests. First introduced in [33], GNNs have subsequently demon-

strated their ability to capture graph structural information. Recent

years, Graph Convolutional Networks (GCN) [12, 16] have achieved

promising results on several tasks. Related works include GAT [38],

which incorporates an attention mechanism, and GraphSage [14],

which can scale to large graphs via neighborhood sampling. [42]

analyzed the relationship between GNNs and the 1-orderWeisfeiler-

Lehman graph isomorphism test (1-WL) and proposed a powerful

model GIN.

Applications. GNN achieves great performance on various tasks,

the most common of which is node classification. [13, 21] approxi-

mated betweenness centrality using GNN, while [4, 5] used GNN

to compute graph similarity in an end-to-end framework. Recently,

some works have also utilized GNNs to conduct substructure count-

ing. Liu [20] learned a neural model to count subgraph isomor-

phisms, while Ying [29] found frequent subgraphs in a large target

graph via a GNN encoder and motif search procedure. [11, 35] pro-

posed to improve GNNs’ graphlet counting ability by employing

higher-order GNNs. However, these approaches cannot scale to

million-scale graphs due to their high time complexity.

3 PROBLEM DEFINITION
Consider a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 denotes its node set and

𝐸 represents its edge set. The local graphlet frequency 𝐿
𝑘 𝑗
𝑢 of a

𝑘-order graphlet 𝐺 𝑗 for node 𝑢 is defined as the probability that

a random 𝑘-order subgraph in 𝐺 with 𝑢 included can induce the

same structure of 𝐺 𝑗 . Formally, we can define 𝐿
𝑘 𝑗
𝑢 as follows:

𝐿
𝑘 𝑗
𝑢 =

𝑁
𝑘 𝑗
𝑢∑𝑚

𝑗 ′=1 𝑁
𝑘 𝑗 ′
𝑢

(1)

where 𝑁
𝑘 𝑗
𝑢 is the number of 𝑘-order graphlet𝐺 𝑗 involving node 𝑢,

𝑚 is the number of different types of 𝑘 order graphlets. Intuitively,

𝐿
𝑘 𝑗
𝑢 represents the percentage of the 𝑘-order graphlet 𝐺 𝑗 among

all 𝑘-order graphlets that contain node 𝑢. Figure 1 enumerates all

3-order (G0–G1), 4-order (G2–G7), and 5-order (G8–G28) graphlets.

Consider G3 as an example; its frequency for node 𝑢 is the ratio

between the number of G3 that contain 𝑢 and the number of all

4-order graphlets (G2–G7) that include 𝑢.

Problem. The goal of this work is to estimate the local graphlet
frequency distribution L𝑘𝑢 = {𝐿𝑘 𝑗𝑢 } for each node𝑢 in𝑉 . For example,

a node’s 5-order graphlet frequency distribution is a 21-length

vector, where each element corresponds to the percentage of one

graphlet from G8 to G28.

Traditionally, most related works have focused on the exact

count of these graphlets, either locally or globally; examples in-

clude the Escape [28] and PGD [1] algorithms. However, the time

complexity of these methods is very high (usually super-linear in

|𝑉 | + |𝐸 |), and to date, they can only handle graphs with hundreds

of millions of edges. Prior attempts to approximate the graphlet

counts/distributions focused primarily on global estimations. In

contrast, local estimation is a more challengeable task [30]. We

instead focus on estimating the local graphlet frequency for billion-

scale graphs in this work.

4 OUR APPROACH

Overview. To estimate the local graphlet frequency (LGF) for a

graph, traditional methods typically leverage graph theory to de-

velop approximate algorithms capable of directly enumerating the

graphlets of interest [30]. In this work, we propose to leverage a

machine learning pipeline for this task. In general terms, we take

small graphs, compute their LGFs using specific exact algorithms,

and then train a model to fit the computed LGFs. The promise is

that the model can learn the correlation between the structural

information and LGF.

To this end, we present the DeepGraphlet framework in this

section. Figure 2 presents an overview of our approach. Given a

particular graph, the first step of DeepGraphlet is to extract the

novel k-tuple features, which reflects the local structural informa-

tion of each node. These features are then fed to a multi-layer GNN

3
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Figure 3: Illustration of k-tuple features’ expressive power.

to quantify the correlation between a node’s local structural infor-

mation and its LGF. Different layers of DeepGraphlet then output

the computed LGFs with different orders.

In more detail, we aim to solve the following three major tech-

nical issues in the rest of this section: 1) LGF is highly relevant to

the structure of the given graph. However, as many existing works

have mentioned, the expressive power of GNNs for graph structural

information is limited [11, 42]. Efficiently and effectively resolving

this issue thus becomes the basis of our approach. 2) LGFs with

different orders are correlated with each other. Ignoring such de-

pendency and computing different-order graphlets independently

can be inefficient and inaccurate. Thus, answering how to model

the dependency among graphlets is vital to model design. 3) As

we discussed above, a significant challenge encountered in LGF

computation is that of how to scale to large graphs. Therefore, in

each part of the model, how to promote the model’s efficiency and

enable it to handle billion-scale graphs remains a crucial problem

we aim to answer.

4.1 Extracting Structural Information
Given that our goal is to handle graph data, we naturally choose

GNN as the underlying model of our framework. Moreover, in-

spired by traditional graphlet counting algorithms like PGD [1],

which is conceptualized as counting a node’s graphlets by gathering

its neighborhoods’ information, we choose GNN because it also

follows a computational paradigm of neighborhood aggregation.

Furthermore, the inductive property of GNN makes it practical for

training the model on small graphs and generalizing the trained

model to large-scale graphs.

However, the expressive power of GNNs is limited for graph

structural information. Notably, computing LGF can be regarded

as a particular form of the graph isomorphism problem. However,

GNN’s ability to test graph isomorphism has been proven to be at

most as powerful as the 1-order Weisfeiler-Lehman (1-WL) graph

isomorphism test [42]. Figure 3 presents an example, in which all

nodes in the graphs have two neighbors. For standard GNNs with

the same node feature initialization, all nodes always have the same

representation in each GNN layer. Accordingly, although they have

different LGFs (e.g., the left graph has a circle made up of five nodes,

while the five nodes in the right graph can only form a simple path),

traditional GNNs find it challenging to distinguish them.

K-tuple features. To better capture the graph structural informa-

tion and help GNNs to exceed the limitation of the 1-WL test, we

propose the novel k-tuple features. The k-tuple is a tuple containing
k nodes, and the induced subgraph of it is connected. We heuristi-

cally sample a fixed number of k-tuples for each node, and regard

the appearance times of the isomorphism types of k-tuples’ induced

subgraph as the feature value.

In more detail, we design an efficient heuristic algorithm to

extract k-tuple features. The pseudo-code is in Appendix B. For a

particular node 𝑣 , wemaintain a node list initialized with 𝑣 itself. We

then perform 𝑘 − 1 sampling steps. In each step, we first randomly

select a node 𝑠 from the node list with the probability proportional

to the degree of each node. In the next step, we randomly select a

neighbor of 𝑠 with probability proportional to the neighbor’s degree

via the alias algorithm and add the neighbor to the node list. After

we have collected 𝑘 nodes, we identify the isomorphism type of

the graph induced by these nodes. We repeat the above process a

fixed times and regard the number of times each isomorphism type

appears as the feature value. It is worth noting that the sampling

algorithm’s time complexity can be described linearly in |𝑉 | + |𝐸 |,
which ensures the efficiency of our model.

Theoretical analysis. With the generated k-tuple features, our

model can exceed the bound of the expressive power of GNNs.

For the example in Figure 3, 1-WL cannot distinguish the nodes in

the two graphs. With the 5-tuple feature, however, the GNNs can

distinguish these nodes at initialization, as the corresponding values

in the k-tuple feature of 5-circle and 5-path are different. More

formally, we have Theorem 4.1 (the proof for which is provided in

Appendix A.1).

Theorem 4.1. GNNs with k-tuple features can exceed the expres-
sive power of 1-WL in the graph isomorphism problem.

Thus, GNNs with the k-tuple features, have more powerful struc-

tural identification ability. Compared with other features that im-

prove the identification ability of GNNs, k-tuple features have sev-

eral advantages. Specifically, compared to one-hot and random

feature [32], k-tuple features are inductive and structure related,

which benefits the final tasks; compared to features like distance

encoding [18], k-tuple features are efficient as the time complexity

of extraction is linearly in |𝑉 | + |𝐸 |.
Furthermore, we analyze the relationship between k-tuple fea-

tures and the k-WL in Theorem 4.2 (the proof of which is in Ap-

pendix A.2).

Theorem 4.2. The (k-1)-WL algorithm is not stronger than GNNs
with k-tuple features in the graph isomorphism problem where 3 ≤
𝑘 ≤ 4.

K-WL algorithm is a more powerful version of the 1-WL algo-

rithm designed for the graph isomorphism problem. The concept

of k-tuple exists in both algorithms. The k-tuple features are ex-

tracted as the node feature initialization for the further GNN layers.

Meanwhile, k-WL constructs a new graph whose nodes are k-tuples

of the original graph’s nodes. The neighbor aggregation is then

conducted on the newly constructed graphs. The expressive power

of GNNs with k-tuple features and k-WL is analyzed in the above

theorem. For example, GNNs with 4-tuple features, can correctly

identify the isomorphism of two graphs, while 3-WL fails.

4.2 Capturing Graphlet Relationship
To further promote the effectiveness of ourmodel, in this section, we

propose to capture the relationships among graphlets in our model.

Naturally, relationships exist among graphlets. For example, as

illustrated in Figure 4, 4-order graphlets can be obtained by adding

4
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Figure 4: An example of relationships between lower-order
and higher-order graphlets.

one more node to 3-order graphlets. Thus, by using the information

of 3-order graphlets, we can count the 4-order graphlets more easily.

Properly utilizing such relationships can accelerate the graphlet

counting process, which is also the motivation behind PGD [1].

DeepGraphlet is designed to capture the cross- and inner-order

relationships in order to compute LGF more accurately and effi-

ciently with powerful components and a novel multi-task mecha-

nism.

Cross-order relationship. To better capture the graph structure

information, we aim to utilize the cross-order relationships. In the

GNNpropagation process, the previous layers’ node representations

contain the lower-order information, while the aggregated neighbor

representation at this layer is a form of higher-order information.

Simply add the information of the previous layer, and the newly

aggregated information, as in normal GNNs, cannot extract the

cross-order relationships well. Thus, to enable the model to learn

more flexible and complex cross-order relationships, we propose to

adopt Gated Recurrent Unit (GRU):

ℎ𝑖
𝑁 (𝑣) =

∑
𝑢∈𝑁 (𝑣)

1

𝑑𝑣
ℎ𝑖−1𝑢 (2)

𝑧𝑖𝑣 = 𝜎 (𝑊 𝑖
𝑧ℎ

𝑖
𝑁 (𝑣) +𝑈

𝑖
𝑧ℎ

𝑖−1
𝑣 ) (3)

𝑟 𝑖𝑣 = 𝜎 (𝑊 𝑖
𝑟 ℎ

𝑖
𝑁 (𝑣) +𝑈

𝑖
𝑟ℎ

𝑖−1
𝑣 ) (4)

ℎ̃𝑖𝑣 = 𝑡𝑎𝑛ℎ(𝑊 𝑖ℎ𝑖
𝑁 (𝑣) +𝑈

𝑖 (𝑟 𝑖𝑣 ⊙ ℎ𝑖−1𝑣 )) (5)

ˆℎ𝑖𝑣 = (1 − 𝑧𝑖𝑣) ⊙ ℎ𝑖−1𝑣 + 𝑧𝑖𝑣 ⊙ ℎ̃𝑖𝑣 (6)

where ℎ𝑖−1𝑢 is the previous layer’s embedding of node 𝑢, 𝑁 (𝑣) is
the neighbors of node 𝑣 , 𝑑𝑣 is the degree of node 𝑣 , and ⊙ is an

element-wise dot operation. Moreover, we use GRUs of different

parameters in each propagation step, as graphlets of different orders

have different cross-order relationships. Note that, in DeepGraphlet,

we choose the mean aggregate function (aggregator) to define how

GNN aggregates the information of neighbors. The reason is that

the mean aggregator can learn the distribution well [42], while LGF

is a distribution of graphlets.

Inner-order relationship. As analyzed in [1], relationships also

exist within graphlets of the same order; accounting for these is es-

sential for graphlet counting. Thus, after we capture the cross-order

relationships and generate the combined higher-order information,

we use a two-layer multi-layer perceptron (MLP) to capture the

inner-order relationships. We then output the higher-order node

representation. The non-linear transformation allows the model to

capture complex inner-order relationships.

ℎ𝑖𝑣 = 𝑅𝑒𝐿𝑈 (𝑊 𝑖2𝑅𝑒𝐿𝑈 (𝑊 𝑖1 ˆℎ𝑖𝑣 + 𝑏𝑖1) + 𝑏𝑖2) (7)

Multitask mechanism.We design a novel multitask mechanism

to further utilize the graphlet relationships by explicitly adding

the supervise signals of different-order LGFs. In addition to the

graphlet relationships, there is another factor that inspires us: in

the computing process, we only require the information of up to

(k-1) hop neighbors to compute the k-order LGF of node 𝑣 . Thus,

the computation of lower-order graphlets naturally requires smaller

GNN propagation times. Based on these inspirations, we propose a

novel multitask mechanism that enables us to compute different-

order LGFs simultaneously.

More specifically, in an 𝐿-layer DeepGraphlet, to output the k-

order LGF, we insert an output layer after the 𝐿 − (𝐾 − 𝑘)𝑡ℎ GNN

layer; here K is the maximum order we want to compute, and k

ranges from 3 to K. The output layer after the 𝑙𝑡ℎ GNN layer is

designed as follows:

L̂𝑙𝑢 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑅𝑒𝐿𝑈 (𝑊 𝑜2𝑅𝑒𝐿𝑈 (𝑊 𝑜1 ˆℎ𝑙𝑢 + 𝑏𝑜1) + 𝑏𝑜2)) (8)

We pass the node representation through a two-layer MLP, then

employ a softmax function to map the output to LGF.

To compute up-to K-order LGF (ranging from 3-order to K-order),

we add different output layers after the (𝐿−(𝐾−3))𝑡ℎ , (𝐿−(𝐾−4))𝑡ℎ ,
..., 𝐿𝑡ℎ GNN layers. We compute the final loss by adding the losses

of different-order LGFs, then conduct the back propagation. As LGF

represents the distribution of the graphlets, we use Kullback-Leibler

(KL) divergence to evaluate the loss between the predicted LGF and

the real LGF. For the k-order LGF:

𝑙𝑜𝑠𝑠𝑘 =
1

|𝑉 |
∑
𝑢∈𝑉

𝑚∑
𝑖=1

�̂�𝑘𝑖𝑢 𝑙𝑜𝑔
�̂�𝑘𝑖𝑢

𝐿𝑘𝑖𝑢
(9)

where m is the number of different k-order graphlets.

Being equipped with the multi-task mechanism, DeepGraphlet

can run substantially faster than standardGNNs, sinceDeepGraphlet

can compute 3 to K-order LGF in a single run. In the meantime,

for standard GNNs, we need to train different models to compute

different-order graphlets. In addition to the increase in efficiency,

training the model with a multi-task mechanism also boosts the

model’s performance in two ways: 1) hard parameter sharing multi-

task learning enables different tasks to share parts of the neural

network layers, which causes the model to attain better general-

ization ability than when tasks are trained separately; 2) as we

discussed above, lower-order graphlets can assist in the computa-

tion of high-order graphlets. By explicitly enforcing different GNN

layers to learn different-order LGFs, DeepGraphlet can compute

high-order LGF more accurately.

4.3 Complexity Analysis
The time complexity of DeepGraphlet contains two parts: k-tuple

feature generation and GNN runtime.

K-tuple feature generation. The k-tuple feature generation time

complexity is 𝑂 ( |𝐸 | + 𝑛 · |𝑉 | · |𝐺𝑘 | · 𝑘!); here 𝑛 is the sampled k-

tuple number for each node, |𝑉 | is the number of nodes, |𝐺𝑘 | is the
number of k-order graphlets, and 𝑘! is the 𝑘 factorial. We use the
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Dataset |𝑉 | |𝐸 | avg. degree

Slashdot 82,168 504,230 6.1

Artist 50,515 819,090 32.4

Google 875,713 4,322,051 4.9

Topcats 748,766 5,522,409 7.4

BerkStan 685,230 7,600,595 11.1

Patents 3,774,768 16,518,947 4.4

LJ 3,997,962 34,681,189 8.7

Orkut 3,072,441 117,185,083 76.3

Friendster 65,608,366 1,806,067,135 27.5

Table 1: Overview of Datasets

alias algorithm with pre-processing time complexity 𝑂 ( |𝐸 |) and
then sample the nodes’ neighbors with a probability proportional

to their degrees in 𝑂 (1). Moreover, 𝑛 · |𝑉 | is the total number of

sampled k-tuples, while |𝐺𝑘 |·𝑘! denotes the time required to identify

the isomorphism type of the induced subgraph of k-tuples. When 𝑘

is small, the isomorphism identification algorithm can be optimized

to 𝑘2 using hashing.

GNN complexity. The single execution time of GNN is linearly

proportional to |𝐸 |, 𝑂 (𝑇 · |𝐸 | · ℎ); here 𝑇 is the number of GNN

layers, |𝐸 | is the number of edges, and ℎ is the dimension of the

neural network’s hidden size.

Overall, the time complexity of DeepGraphlet has a linear rela-

tionship with the number of nodes and edges in a graph.

5 EXPERIMENTS
5.1 Experimental Setup
In our experiments, we focus on computing 3-, 4- and 5-order local

graphlet frequencies, considering that higher-order LGF are rarely

used in practical applications.

Datasets. We adopt nine graph datasets of different scales to vali-

date the effectiveness and efficiency of our model. In more detail,

Slashdot [17], Artist [31], LJ, Orkut and Friendster [44] are social

networks, BerkStan [17], Google [17] and Topcats [47] are web

graphs, and Patents [47] is a citation network. Detailed statistics of

each dataset are presented in Table 1. The training and validation

graphs are generated by sampling connected subgraphs from a real

graph. We repeat the sampling steps to obtain several small graphs

for training and validation. For each graph, we randomly sample 15

small connected subgraphs containing
|𝑉 |
30

nodes; here, 10 sampled

graphs are used for training, while the remaining 5 are validation

graphs. After training the models on the sampled small graphs, we

test the performance on the original real graphs.

Baselines. We compare our model with two categories of baselines.

The first category is the approximate graphlet counting algorithm.

To the best of our knowledge, there is no sampling-based local

graphlet counting algorithm capable of computing up to 5-order

LGF. Thus, we included transformed global graphlet counting algo-

rithm and neural network-basedmodels as our baselines. Motivo [9]

is the state-of-the-art global graphlet counting algorithm based on

color coding.We transform it into the local version as a baseline. For

neural network-based baselines, we consider GCN [16], GIN [42],

rGIN [32] and MLP+K. GIN is an expressive model as powerful

as 1-WL Test in the graph isomorphism problem. rGIN further

improves the expressive power of GIN by incorporating random

features. We further consider several variants of our model as base-

lines; these are referred to as DeepGraphlet-K, DeepGraphlet-R and

DeepGraphlet-M, and these variants are implemented by removing

the k-tuple features, the cross-order relation extraction mechanism,

and the multi-task mechanism respectively from DeepGraphlet. It

should however be noted that although deep models like LRP [11],

k-GNNs [25], RNP-GNNs [35] and distance encoding [18] are pow-

erful in the graph isomorphism problem, we do not regard them

as baselines, since their high time complexity makes them unaf-

fordable even on our smallest graph. For exact graphlet counting

algorithms, we adopt Evoke [27], the state-of-the-art exact count-

ing algorithm for local graphlets. To the best of our knowledge,

Evoke is the most efficient method that is capable of handling up-to

5-order LGF computation.

Evaluation metrics. We compare the performance of different

models in terms of KL divergence between the estimated results

and those computed by the Evoke. LGF computation is not only a

regression problem. Furthermore, LGF is a distribution intrinsically.

Thus, we choose KL divergence as it is a standard metric to mea-

sure the difference between distributions. We further compare the

efficiency of models by reporting their inference time on test data.

We further provide implementation details in Appendix C.

5.2 Results of Effectiveness
We report the effectiveness of DeepGraphlet compared to baselines

in Table 2. It should be noted that smaller KL divergence indicates

a smaller distance between the predicted results and the ground

truth. For overall performance, DeepGraphlet beats all baselines

in nearly all datasets. More specifically, DeepGraphlet achieves a

signficant loss reduction compared to transformed global graphlet

counting algorithmmotivo.When transformed into estimating local

graphlet counting for each node in a graph, the global graphlet

counting algorithm needs significantly larger sample times. We set

the sample times of motivo as |𝑉 | ∗ 100 for each task, which has

already taken orders of magnitude running time than our models.

For GIN, DeepGraphlet decreases by 81% in terms of KL divergence

compared to GIN. This is because GIN uses a sum aggregator, and

the numeric scale of the sum aggregator’s output is dependent on

degrees. Therefore, the average degree gap between the train and

test graphs makes GIN’s performance sub-optimal. As for the GCN

and rGIN, our model yields KL divergence values that are 75% and

72% lower respectively. This is due to the ability of k-tuple features

to capture structural information, which is essential to the LGF

computation. Due to being equipped with k-tuple features, our

model’s expressive ability is stronger than the baselines.

For the ablation studies shown in Table 3, we illustrate the effec-

tiveness of three mechanisms of DeepGraphlet. DeepGraphlet-K

is the proposed model with the k-tuple features removed. Deep-

Graphlet exhibits a noticeable performance improvement compared

to DeepGraphlet-K (76% KL divergence reduction), which demon-

strates the importance of K-tuple features for LGF computation.

The K-tuple features offer more structural information to the model,

which enables it to compute the LGF more accurately. Moreover,

compared to DeepGraphlet-R, DeepGraphlet exhibits an obvious

performance improvement (46% KL divergence reduction). This is
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Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

motivo 3.785±0.005 3.341±0.015 4.339±0.007 4.673±0.048 4.132±0.002 3.462±0.002 4.124±0.011 4.130±0.014
GCN 0.788±0.017 0.544±0.042 1.608±0.084 1.524±0.023 1.077±0.061 0.330±0.041 0.732±0.026 0.672±0.018
GIN 67.69±41.52 5.804±1.594 0.803±0.111 2.616±1.160 1.035±0.126 0.210±0.015 0.640±0.017 3.205±1.158
rGIN 2.069±0.522 1.419±0.663 0.649±0.108 1.041±0.127 0.793±0.084 0.166±0.011 0.610±0.026 1.316±0.564

DeepGraphlet 0.251±0.030 0.151±0.011 0.273±0.013 0.292±0.009 0.386±0.015 0.061±0.002 0.181±0.008 0.161±0.005

3 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

motivo 0.514±0.002 0.460±0.001 0.561±0.002 0.520±0.001 0.590±0.002 0.471±0.000 0.485±0.000 0.428±0.000
GCN 0.024±0.010 0.027±0.006 0.140±0.037 0.041±0.016 0.045±0.003 0.021±0.002 0.043±0.002 0.034±0.002
GIN 0.050±0.012 0.055±0.013 0.034±0.002 0.079±0.047 0.068±0.025 0.024±0.004 0.050±0.010 0.040±0.008
rGIN 0.093±0.039 0.046±0.006 0.023±0.009 0.046±0.009 0.042±0.011 0.015±0.000 0.035±0.004 0.035±0.003

DeepGraphlet 0.010±0.006 0.004±0.001 0.006±0.001 0.004±0.001 0.005±0.001 0.004±0.000 0.002±0.000 0.001±0.000

4 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

motivo 1.147±0.002 1.028±0.007 1.541±0.005 1.520±0.010 1.277±0.008 0.993±0.001 1.381±0.001 1.410±0.005
GCN 0.287±0.029 0.195±0.009 0.489±0.027 0.472±0.014 0.348±0.024 0.099±0.016 0.209±0.009 0.190±0.011
GIN 2.804±1.686 0.951±0.123 0.255±0.053 1.446±1.067 0.231±0.020 0.076±0.009 0.199±0.017 0.269±0.050
rGIN 0.704±0.132 0.315±0.011 0.162±0.028 0.305±0.091 0.230±0.014 0.056±0.006 0.178±0.016 0.601±0.291

DeepGraphlet 0.094±0.013 0.045±0.004 0.057±0.003 0.069±0.004 0.091±0.005 0.018±0.001 0.037±0.003 0.036±0.002

5 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

motivo 2.123±0.005 1.853±0.008 2.237±0.015 2.632±0.043 2.265±0.009 1.999±0.002 2.258±0.010 2.291±0.018
GCN 0.476±0.020 0.322±0.044 0.979±0.073 1.010±0.020 0.684±0.040 0.209±0.035 0.481±0.016 0.448±0.016
GIN 64.83±42.21 4.799±1.577 0.513±0.075 1.091±0.674 0.735±0.116 0.111±0.009 0.391±0.014 2.897±1.144
rGIN 1.273±0.501 1.058±0.667 0.464±0.096 0.690±0.196 0.521±0.071 0.095±0.008 0.398±0.011 0.681±0.283

DeepGraphlet 0.147±0.016 0.102±0.009 0.210±0.011 0.219±0.005 0.290±0.012 0.039±0.001 0.142±0.005 0.123±0.003
Table 2: The results of training on sampled sub-graphs of a graph and testing the model’s performance (KL-divergence) on the
same graph. The smaller value means better performance.

due to the fact that flexible functions can learn the complex rela-

tionships between graphlets, which is useful for LGF computation.

As for the comparison with the variant DeepGraphlet-M, Deep-

Graphlet achieves 3%+ better overall performance, while running

much faster as introduced later in Sec 5.4.

5.3 Results of Transfer Ability
In this section, we investigate the transfer ability of DeepGraphlet.

Specifically, we train models on sampled small graphs of one graph.

Then, we apply the trained models on other graphs directly without

fine tuning.

As shown in Table 5, DeepGraphlet has a good transfer ability.

For example, models trained on sampled graphs of Orkut perform

well on Artist and LJ. They outperform the models trained on

sampled graphs of Artist when tested on Artist, and achieve a quite

similar performance of the models trained on sampled graphs of LJ

and tested on LJ. The experimental results also provide insights for

how to choose a suitable training dataset. The transfer performance

mainly depends on graph scales and graph types of trained and

tested graphs.

For graph scales, the models trained on larger graphs perform

better on the tested graphs. For instance, the models trained on

Orkut outperform the models trained on LJ when tested on Artist

and Topcats. Orkut has a much larger edge scale than LJ. Thus,

DeepGraphlet is more likely to capture more general graph struc-

ture information from sampled graphs of Orkut than LJ, which

leads to better performance.

For graph types, the models transfer better on the graphs of the

same type. In Table 5, Artist, LJ, and Orkut are social graphs, while

Topcats is a web graph. When tested on Topcats, the models trained

on sampled graphs of LJ and Orkut have worse performances than

those trained on Topcats. As a web graph, the structures of Topcats

are pretty different from that of social networks, which leads to such

results. However, between the same type of graphs, DeepGraphlet

transfers well. The models trained on sampled graphs of LJ and

Orkut outperform the models trained on those of Artist when tested

on Artist.

In summary, our DeepGraphlet has a great transfer ability, and

we can pretrain DeepGraphlet on graphs that contain abundant

graph structures (a fairly large graph scale) to obtain good results

on unseen graphs.
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Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

DeepGraphlet-K 0.736±0.085 0.526±0.094 1.689±0.122 1.254±0.133 1.337±0.121 0.242±0.019 0.584±0.035 0.688±0.065
DeepGraphlet-R 0.514±0.105 0.278±0.015 0.563±0.010 0.673±0.035 0.492±0.027 0.098±0.002 0.361±0.029 0.357±0.009
DeepGraphlet-M 0.275±0.034 0.145±0.008 0.323±0.022 0.306±0.008 0.352±0.010 0.059±0.001 0.181±0.005 0.177±0.008
DeepGraphlet 0.251±0.030 0.151±0.011 0.273±0.013 0.292±0.009 0.386±0.015 0.061±0.002 0.180±0.008 0.161±0.005

3 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

DeepGraphlet-K 0.038±0.019 0.025±0.012 0.042±0.007 0.012±0.004 0.060±0.018 0.020±0.006 0.035±0.011 0.016±0.002
DeepGraphlet-R 0.018±0.009 0.005±0.000 0.013±0.001 0.008±0.002 0.007±0.001 0.008±0.000 0.009±0.001 0.003±0.000
DeepGraphlet-M 0.009±0.007 0.003±0.000 0.010±0.001 0.003±0.000 0.005±0.001 0.004±0.000 0.002±0.000 0.002±0.000
DeepGraphlet 0.010±0.006 0.004±0.001 0.006±0.001 0.004±0.001 0.005±0.001 0.004±0.000 0.002±0.000 0.001±0.000

4 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

DeepGraphlet-K 0.277±0.037 0.198±0.038 0.483±0.041 0.492±0.073 0.423±0.024 0.094±0.010 0.189±0.034 0.201±0.026
DeepGraphlet-R 0.215±0.080 0.134±0.022 0.161±0.004 0.241±0.006 0.140±0.006 0.033±0.000 0.102±0.009 0.115±0.011
DeepGraphlet-M 0.105±0.010 0.049±0.006 0.073±0.009 0.101±0.006 0.086±0.003 0.017±0.001 0.040±0.003 0.048±0.007
DeepGraphlet 0.094±0.013 0.045±0.004 0.057±0.003 0.069±0.004 0.091±0.005 0.018±0.001 0.037±0.003 0.036±0.002

5 - LGF

Data.

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut

DeepGraphlet-K 0.421±0.061 0.303±0.080 1.164±0.114 0.751±0.081 0.854±0.124 0.128±0.010 0.360±0.013 0.471±0.046
DeepGraphlet-R 0.281±0.053 0.138±0.012 0.388±0.007 0.424±0.033 0.345±0.023 0.057±0.001 0.250±0.026 0.238±0.004
DeepGraphlet-M 0.161±0.022 0.092±0.011 0.240±0.017 0.202±0.009 0.261±0.013 0.038±0.001 0.139±0.006 0.127±0.006
DeepGraphlet 0.147±0.016 0.102±0.009 0.210±0.011 0.219±0.005 0.290±0.012 0.039±0.001 0.142±0.005 0.123±0.003

Table 3: Ablation study that compares the effectiveness of DeepGraphlet and its variants measured in KL divergence. The
smaller value means better performance

Alg.

Data

Slashdot Artist Google Topcats BerkStan Patents LJ Orkut Friendster

EVOKE 4.5 121 285 7.2K 3.6K 1K 20.3K 139.7K ——

motivo 170.2 90.1 3.8K 26.1K 34.6K 6.3K 25.8K 42.6K 362.3K

k-tuple feature 1 1 12 11 9 52 64 82 1.8K

DeepGraphlet-M 1.8 1.4 14.2 56.6 11.8 69.8 90.9 199.2 10.8K

DeepGraphlet 0.9 0.6 7.0 28.3 5.8 41.3 53.7 104.5 4.3K

Table 4: Running time of models for computing 3-, 4- and 5-order LGF. Time is measured in the unit of second. The running
time of other GNN baselines is similar to that of DeepGraphlet-M.

Train

sumLGF

Artist Topcats LJ Orkut

Artist 0.151 0.576 0.237 0.453

Topcats 0.115 0.292 0.191 0.308

LJ 0.092 0.591 0.181 0.248

Orukt 0.090 0.585 0.189 0.161
Table 5: Results of training and validating DeepGraphlet on
sampled small graphs of one graph and then testing the
model’s performance (KL divergence) on other graphs. The
smaller value means better performance.

5.4 Results of Efficiency
In this section, we present the evaluation result of model efficiency

(See Table 4). Our proposed framework’s computation of LGF on

new graphs comprises two parts: k-tuple feature extraction time

and GNN model running time.

DeepGraphlet achieves a significant improvement of computa-

tional speed compared to EVOKE and motivo. For instance, on the

Orkut (hundreds of million-scale graphs), DeepGraphlet achieves a

749x speedup compared to EVOKE. When it comes to Friendster (a

billion-scale graph), EVOKE cannot handle it, while motivo spends

59 times running time than DeepGraphlet. This result of Deep-

Graphlet’s running time is consistent with the analysis presented

in Section 4.3. DeepGraphlet’s time complexity is linearly related

to a graph’s scale.

The difference between DeepGraphlet and DeepGraphlet-M is

the multitask mechanism. DeepGraphlet is a 3-layer GNN with

one output layer after each GNN layer. DeepGraphlet-M uses three
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GNNmodels: 1-, 2- and 3-layer GNN to compute 3-, 4- and 5-LGF re-

spectively. Therefore, DeepGraphlet achieves a 2x speedup relative

to DeepGraphlet-M in terms of running time, which demonstrates

the effectiveness of the multi-task mechanism.

6 CONCLUSION
In this paper, we address the challenging LGF computing prob-

lem. We are the first to investigate the power of GNN for LGF

computation on billion-scale graphs. We propose a novel model,

DeepGraphlet. The k-tuple features enable GNNs to capture rich

structural information efficiently. Furthermore, we theoretically

prove its expressive power. DeepGraphlet captures the cross- and

inner-order relationships among graphlets. At the same time, a

multi-task mechanism enables the model to learn different-order

graphlets simultaneously. Experiments show that DeepGraphlet

achieves promising effectiveness improvements relative to base-

lines. Moreover, the model’s time complexity is linearly related to

the number of nodes and edges in a graph. DeepGraphlet achieves

a 749x speedup when compared with exact graphlet computing al-

gorithms on hundreds of millions-scale graphs. Furthermore, Deep-

Graphlet can handle billion-scale graphs, achieving 59x speedup

than sampling baselines.
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A PROOF OF THEOREMS
Before addressing the detailed proof of the theorems, we outline

lemmas and the 1-WL in Algorithm 1 as preliminaries. Here, {{...}}
denotes a multiset, while the function 𝐻𝐴𝑆𝐻 is injective.

Definition A.1 (Corresponding nodes pair). Graph isomorphism

problem is determining whether there is a node mapping between

two graphs that the two graphs are the same after the mapping. If

𝐺 and 𝐺 ′
are isomorphic, 𝑣 ∈ 𝐺 and 𝑣 ′ ∈ 𝐺 ′

, 𝑣 are mapped to 𝑣 ′ in
the mapping that make the two graphs isomorphic, then we call

(𝑣, 𝑣 ′) corresponding nodes pair.

The following two lemmas are for the proof of Theorems 4.1 and

Theorem 4.2.

Lemma A.2. Graphs 𝐺 and 𝐺 ′ are isomorphic, and in all corre-
sponding nodes pairs, the features of the two nodes are the same. GNNs
can output the same representation for 𝐺 and 𝐺 ′, and determine that
the two graphs are isomorphic.

Proof. Due to 𝐺 and 𝐺 ′
being isomorphic, 1-WL will output

the same representation for the two graphs. GNNs’ computation is

the same as 1-WL, except that GNNs use neural networks in the

aggregate and update functions and 1-WL uses the injective hash

function. Xu [42] proves that the computation process of GNNs

with appropriate aggregate and update functions can be injective,

then GNNs can also output the same representation for 𝐺 and 𝐺 ′
.

Therefore, GNNs identify the two graphs are isomorphic. □

Lemma A.3. Given a pair of graphs 𝐺 = (𝑉 , 𝐸, 𝑋 ) and 𝐺 ′ =

(𝑉 ′, 𝐸 ′, 𝑋 ′), and {{𝑥0𝑣 |𝑣 ∈ 𝑉 }} ≠ {{𝑥 ′0
𝑣′ |𝑣

′ ∈ 𝑉 ′}}, then GNNs can
output different representations for𝐺 and𝐺 ′, and distinguish the two
graphs.

Proof. As {{𝑥𝑙−1𝑣 |𝑣 ∈ 𝑉 }} ≠ {{𝑥 ′𝑙−1
𝑣′ |𝑣 ′ ∈ 𝑉 ′}} and all the com-

putation of GNNs with appropriate aggregate and update functions

can be injective, then the final representation of two graphs are

different no matter what the graph structure is. Thus, GNNs can

distinguish these two graphs. □

Algorithm 1 1-WL

Input: A pair of graphs 𝐺 = (𝑉 , 𝐸, 𝑋 ) and 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝑋 ′)
Output: Whether two graphs 𝐺 and 𝐺 ′

are isomorphic

1: 𝑐0𝑣 = 𝐻𝐴𝑆𝐻 (𝑋𝑣) (∀𝑣 ∈ 𝑉 )
2: 𝑐 ′0

𝑣′ = 𝐻𝐴𝑆𝐻 (𝑋 ′
𝑣′) (∀𝑣

′ ∈ 𝑉 ′)
3: l = 0;

4: while not converging:

5: l += 1

6: if {{𝑐𝑙−1𝑣 |𝑣 ∈ 𝑉 }} ≠ {{𝑐 ′𝑙−1
𝑣′ |𝑣 ′ ∈ 𝑉 ′}}

7: return ’not isomorphic’

8: 𝑐𝑙𝑣 = 𝐻𝐴𝑆𝐻 (𝑐𝑙−1𝑣 , {{𝑐𝑙−1𝑢 |𝑢 ∈ 𝑁 (𝑣)}})(∀𝑣 ∈ 𝑉 )
9: 𝑐 ′𝑙

𝑣′ = 𝐻𝐴𝑆𝐻 (𝑐 ′𝑙−1
𝑣′ , {{𝑐 ′𝑙−1𝑢′ |𝑢 ′ ∈ 𝑁 (𝑣 ′)}})(∀𝑣 ′ ∈ 𝑉 ′)

10: return ’isomorphic’;

A.1 Proof of Theorem 4.1
Proof. Suppose we have two graphs 𝐺 = (𝑉 , 𝐸, 𝑋 ) and 𝐺 ′ =

(𝑉 ′, 𝐸 ′, 𝑋 ′). 𝐾 and 𝐾 ′
are the extracted k-tuple features of the two

graphs’ nodes. 𝐹 = 𝑋 | |𝐾 and 𝐹 ′ = 𝑋 ′ | |𝐾 ′
represent the node fea-

ture initialization of GNNs with k-tuple features, where | | denotes
concatenate.

Case 1. 𝐺 and 𝐺 ′
are isomorphic, and 1-WL always regards their

graph structures as the same. For the k-tuple feature, given that the

structure of the two graphs is the same, the isomorphic types of

the sampled tuples of the two graphs follow the same distribution.

According to the Law of Large Numbers, when the sample times

approaches infinity, the k-tuple features will converge to the same.

(𝑋 = 𝑋 ′
and 𝐾 = 𝐾 ′) ⇒ 𝐹 = 𝐹 ′, by applying Lemma A.2, GNN

can identify that 𝐺 and 𝐺 ′
are isomorphic. Therefore, GNNs with

k-tuple features have the same expressive power as 1-WL in this

case from a probabilistic perspective.

Case 2. 𝐺 and 𝐺 ′
are not isomorphic, and 1-WL regards their

graph structures differently. It means that in the 1-WL computa-

tion, at least in one iteration, there is a corresponding nodes pair

(𝑣, 𝑣 ′) that the two nodes’ representations are different. Because

the computation of GNNs can be injective, with 𝑋 (1-WL’s initial

feature) as node feature initialization, GNNs can output different

representations for the two nodes in the corresponding nodes pair

(𝑣, 𝑣 ′). Then if we feed GNNs with 𝑋 | |𝐾 , the representations of the
two nodes (𝑣, 𝑣 ′) are also different due to the injective property of

GNN. Thus, GNNs can also determine that these two graphs are

different, and in this case, the two algorithms have equal ability.

Case 3. 𝐺 and𝐺 ′
are not isomorphic and 1-WL regards their graph

structure as same. 1-WL cannot distinguish specific graph structures

even though they are different [11]. However, GNNs with k-tuple

features can distinguish more pairs of graphs than 1-WL, as their

awareness of specific high-order structures, such as Figure 3 and

Figure 5. According to Lemma A.3, GNN can identify these graphs

are non-isomorphic. Thus, GNNs with k-tuple features is a more

powerful approach than 1-WL in this case.

The above three cases cover all possible scenarios. In summary,

GNNs with k-tuple features, can exceed the expressive power of

1-WL in the graph isomorphism problem. □

A.2 Proof of Theorem 4.2
Proof. We prove that (k-1)-WL algorithm is not stronger than

GNNs with k-tuple features by showing that there are graphs that

(k-1)-WL cannot distinguish while GNNs with k-tuple features

can. As shown in Figure 5(a), 1-WL and 2-WL cannot distinguish

these two graphs. However, GNNs with the k-tuple feature are

aware of the triangles’ existence. And in Figure 5(b), [8] says that

3-WL cannot distinguish the two graphs. As 4-clique exist in one

graph but not in another, the k-tuple features of the two graphs are

different.

{{𝑘𝑙−1𝑣 |𝑣 ∈ 𝑉 }} ≠ {{𝑘 ′𝑙−1𝑣′ |𝑘 ′ ∈ 𝑉 ′}} ⇒ 𝐹 ≠ 𝐹 ′

According to Lemma A.3, GNNs with k-tuple features can distin-

guish these two graphs. In conclusion, (k-1)-WL algorithm is not

stronger than GNNs with k-tuple features in graph isomorphism

problem where 3 ≤ 𝑘 ≤ 4. □
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Figure 5: Example of 1-, 2- and 3-WL fails.

B K-TUPLE FEATURE PSEUDO CODE
The pseudo-code for k-tuple feature generation is presented in

Algorithm 2.

Algorithm 2 k-tuple feature extraction.

Input: Graph 𝐺 = (𝑉 , 𝐸), the sample number of k-tuples for each

node, 𝑛; the order of sampled k-tuple, 𝑘 ; the list of all non-

isomorphism k-tuple graph sets, 𝑆

Output: k-tuple feature 𝐾 with shape(|𝑉 |, |𝑆 |);
1: Construct variables for Alias sampling methods for random

drawing a node’s neighbor in O(1);

2: Fill 𝐾 shape(|𝑉 |, |𝑆 |) with zeros;

3: for 𝑣 in 𝑉 :

4: for i in range(n):

5: 𝑇 = [𝑣]

6: for j in range(𝑘 − 1):

7: randomly sample a node 𝑢 in 𝑇 with probability

proportional to their degree;

8: randomly sample a neighbor 𝑛(𝑢) of node 𝑢 with

probability proportional to neighbors’ degree;

9: add the neighbor 𝑛(𝑢) to 𝑇 ;
10: Determine the induced subgraph of 𝑇 is isomorphic to

which k-tuple in 𝑆 , and add the corresponding value in 𝑘𝑣 by

1/𝑛
11: return 𝐾 ;

C IMPLEMENTATION DETAILS
All experiments are conducted on a 56-core CPU with 384GB mem-

ory and NVIDIA RTX 2080 GPUs. Since EVOKE only utilizes CPUs,

neural models are trained with GPUs and tested on CPUs to facili-

tate fair comparison. Each experiment is repeated five times.

We add dropoutwith a drop probability 0.5 and a batch normaliza-

tion after each layer for neural models. All embedding dimensions

and hidden embedding dimensions are set to 128. The Adam opti-

mizer with a learning rate of 0.001 is adopted to train the models.

The layer numbers of GNNs with k-tuple features are set to 3, while

the others are set to 5. For models without multitask mechanism

(DeepGraphlet-M), if the number of GNN layers is set to 𝐿, we train

three different GNN models of 𝐿 − 2, 𝐿 − 1 and 𝐿 layers to compute

3-, 4- and 5-order LGF respectively. In all experiments, for k-tuple

features, we sample 3-, 4- and 5-tuple 100 times for every node.

11


	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Graphlet Counting Algorithms
	2.2 Graph Neural Networks

	3 Problem Definition
	4 Our Approach
	4.1 Extracting Structural Information
	4.2 Capturing Graphlet Relationship
	4.3 Complexity Analysis

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Results of Effectiveness
	5.3 Results of Transfer Ability
	5.4 Results of Efficiency

	6 CONCLUSION
	References
	A Proof of Theorems
	A.1 Proof of Theorem  4.1
	A.2 Proof of Theorem  4.2

	B K-tuple feature pseudo code
	C Implementation details

