
DropMessage: Unifying Random Dropping for Graph Neural Networks

Taoran Fang1 , Zhiqing Xiao1 , Chunping Wang2 , Jiarong Xu3 , Xuan Yang1 , Yang Yang1∗

1Zhejiang University
2FinVolution Group
3Fudan University

{fangtr, zhiqing.xiao, 3160102542, yangya}@zju.edu.cn, wangchunping02@xinye.com,
jiarongxu@fudan.edu.cn

Abstract

Graph Neural Networks (GNNs) are powerful tools
for graph representation learning. Despite their
rapid development, GNNs also faces some chal-
lenges, such as over-fitting, over-smoothing, and
non-robustness. Previous works indicate that these
problems can be alleviated by random dropping
methods, which integrate noises into models by
randomly masking parts of the input. However,
some open-ended problems of random dropping
on GNNs remain to solve. First, it is challeng-
ing to find a universal method that are suitable
for all cases considering the divergence of differ-
ent datasets and models. Second, random noises
introduced to GNNs cause the incomplete cover-
age of parameters and unstable training process.
In this paper, we propose a novel random drop-
ping method called DropMessage, which performs
dropping operations directly on the message ma-
trix and can be applied to any message-passing
GNNs. Furthermore, we elaborate the superiority
of DropMessage: it stabilizes the training process
by reducing sample variance; it keeps information
diversity from the perspective of information the-
ory, which makes it a theoretical upper bound of
other methods. Also, we unify existing random
dropping methods into our framework and analyze
their effects on GNNs. To evaluate our proposed
method, we conduct experiments that aims for mul-
tiple tasks on five public datasets and two industrial
datasets with various backbone models. The ex-
perimental results show that DropMessage has both
advantages of effectiveness and generalization.

1 Introduction
Graphs, which exist ubiquitously in the real world, are
used to present complex relationships among various ob-
jects in numerous domains such as social media (social net-
works), finance (trading networks), and biology (biological
networks). As powerful tools for representation learning on

∗Corresponding author.

graphs, graph neural networks (GNNs) have attracted consid-
erable attention recently Bruna et al. [2013]; Defferrard et al.
[2016]; Ding et al. [2018]; Kipf and Welling [2017]; Li et al.
[2015]; Velickovic et al. [2018]. In particular, GNNs adopt
a message-passing schema Gilmer et al. [2017], in which
each node aggregates information from its neighbors in each
convolutional layer, and have been widely applied in vari-
ous downstream tasks such as node classification Kipf and
Welling [2017], link prediction Kipf and Welling [2016], ver-
tex clustering Ramaswamy et al. [2005], and recommenda-
tion systems Ying et al. [2018].

Yet, despite their rapid development, training GNNs on
large-scale graphs is facing several serious issues such as
over-fitting, over-smoothing, and non-robustness. Indeed,
compared to other data forms, gathering labels for graph data
is both expensive and inherently biased, which causes the
limitation to the generalization ability of GNNs that brought
by overfitting. Besides, representations of different nodes
in a GNN tend to become indistinguishable as a result of
aggregating information from neighbors recursively. This
phenomenon of over-smoothing prevents GNNs from effec-
tively modeling the higher-order dependencies from multi-
hop neighbors Chen et al. [2020]; Li et al. [2018b]; Oono and
Suzuki [2020]; Xu et al. [2018]; Zhao and Akoglu [2020].
Recursively aggregating schema leads GNNs to be vulnera-
ble to the quality of input graphs Zhu et al. [2019]; Zügner et
al. [2018]. In other words, noisy graphs or adversarial attacks
can easily influence a GNN’s performance.

The aforementioned problems can be helped by random
dropping methods Feng et al. [2020]; Hinton et al. [2012];
Rong et al. [2019], which integrate noises into models by ran-
domly masking parts of the input. These methods are applied
to focus on randomly dropping or sampling existing infor-
mation, and can also be considered as a data augmentation
technique. Benefiting from the advantages of being unbiased,
adaptive, and free of parameters, random dropping methods
have contributed a lot to improve the performance of most
GNNs.

However, some open questions related to random dropping
methods on GNNs still exist. First, a general and critical
issue of existing random dropping methods is that random
noises introduced to GNNs make parameters difficult to con-
verge and the training process unstable. Especially, difficulty
is aggravated when dealing with graph data which contains

ar
X

iv
:2

20
4.

10
03

7v
1

 [
cs

.L
G

]
 2

1
A

pr
 2

02
2

(a) Dropout (b) DropEdge

(c) DropNode (d) DropMessage

Figure 1: Illustrations of various random dropping methods in the
message passing process. In the figure, arrows indicate the direction
of the message propagation. We present the source node (red circle)
to deliver messages and its 1-hop neighbors (gray circles). Solid red
grids represent reserved messages, while dotted white grids repre-
sent the masked ones. Solid lines represent the reserved edges, and
dotted lines represent the masked ones.

both node features and topology information. Moreover, it is
challenging to find an optimal dropping method suitable to
all graphs and models, because different graphs and models
are equipped with their own properties and the model perfor-
mance can be influenced greatly by employing various drop-
ping strategies. Furthermore, the answer of how to choose a
proper dropping rate when applying these methods is still un-
clear, while no theoretical guarantee has been provided until
now to explain why random dropping methods are capable to
improve a GNN’s performance.

In this paper, we propose a novel random dropping method
called DropMessage, which can be applied to all message-
passing GNNs. As Figure 1 suggests, existing random drop-
ping methods perform dropping on either the node feature
matrix Feng et al. [2020]; Hinton et al. [2012] or the adja-
cency matrix Feng et al. [2020], while our DropMessage per-
forms dropping operations on the message matrix, which al-
lows the same node to propagate different messages to its dif-
ferent neighbors. Besides, we unify existing dropping meth-
ods to our framework and demonstrate theoretically that con-
ducting random dropping methods on GNNs is equivalent to
introducing additional regularization terms to their loss func-
tions, which makes the models more robust. Furthermore,
we also elaborate the superiority of our DropMessage whose
sample variance is much smaller and training process is more
stable. From the perspective of information theory, DropMes-
sage keeps the property of information diversity, and is the-
oretically regarded as an upper bound of other random drop-
ping methods. To sum up, the contributions of this paper are
as follows:

• We propose a novel random dropping method, called

DropMessage, for all message-passing GNNs. Most of
existing random dropping methods can be unified into
our framework via performing masking in accordance
with the certain rule on the message matrix. Then it is
possible to regard these methods as one special form of
DropMessage.

• We give theoretical analysis on random dropping meth-
ods and provide an upper bound of the dropping rate for
DropMessage.

• We conduct sufficient experiments on seven datasets,
containing two industrial datasets, in different down-
stream tasks. Experimental results show that DropMes-
sage consistently performs well compared to different
random dropping methods.

2 Related Work
To sort out the key logic of our work, we first review some re-
lated work about random dropping methods with a particular
focus on GNNs.

In general, random dropping can be regarded as a form
of feature-noising schema that alleviates over-fitting by ar-
tificially corrupting the training data. As a representative
work, Dropout is first introduced by Hinton et al. Hinton et
al. [2012] and has been proved to be effective in many sce-
narios Abu-Mostafa [1990]; Burges and Schölkopf [1996];
Maaten et al. [2013]; Rifai et al. [2011a]; Simard et al.
[1998]. Besides, Bishop Bishop [1995] demonstrates the
equivalence of corrupted features and L2-type regularization.
Wager et al. Wager et al. [2013] show that the dropout regu-
larizer is first-order equivalent to an L2 regularizer that being
applied after scaling the features by an estimate of the inverse
diagonal Fisher information matrix.

With the rapid development of GNNs, random dropping
has also been generalized to the graph field, thus leading to
three most common methods: Dropout, DropEdge Rong et al.
[2019] and DropNode Feng et al. [2020]. Dropout performs
random dropping operation on the node feature matrix, while
DropEdge and DropNode, as the name implies, respectively
act on the adjacency matrix (edges) and nodes. These ran-
dom dropping methods can also be regarded as special forms
of data augmentation, with the advantage of not requiring pa-
rameter estimation and easy to apply. All the methods men-
tioned above can be used to alleviate over-fitting and over-
smoothing on GNNs. However, they can achieve effective
performance only on some specific datasets and GNNs. The
question of how to find an optimal dropping method that suit-
able for most cases still remains to be explored. Moreover,
there is no theoretical explanation about the effectiveness of
random dropping methods on GNNs, which adds some ambi-
guity to the function of these methods.

3 Notations and Preliminaries
Notations. Let G = (V,E) represent the graph, where
V = {v1, . . . , vn} denotes the set of n nodes, and E ⊆
V × V is the set of edges between nodes. The node fea-
tures can be denoted as a matrix X = {x1, . . . , xn} ∈ Rn×c,
where xi is the feature vector of the node vi, and c is the

dimensionality of node features. The edges describe the re-
lations between nodes and can be represented as an adjacent
matrix A = {a1, . . . , an} ∈ Rn×n, where ai denotes the i-th
row of the adjacency matrix, and A (i, j) denotes the relation
between nodes vi and vj . Also, the node degrees are given
by d = {d1, . . . , dn}, where di computes the sum of edge
weights connected to node vi. Meanwhile, the degree of the
whole graph is calculated by d(G) =

∑n
i di. When we ap-

ply message-passing GNNs on G, the message matrix can be
represented as M = {m1, . . . ,mk} ∈ Rk×c, where mi is a
message propagated between nodes, and k is the total number
of messages propagated on the graph.
Message-passing GNNs. Most of the existing GNN mod-
els adopt the message-passing framework, where each node
sends messages to its neighbors and simultaneously receives
messages from its neighbors. In the process of the propaga-
tion, node representations are updated based on node feature
information and messages from neighbors, which can be for-
mulated as

h
(l+1)
i = γ(l)(h

(l)
i ,AGGj∈N (i)(φ

(l)(h
(l)
i , h

(l)
j , ej,i))) (1)

where h(l)i denotes the hidden representation of node vi in the
l-th layer, and N (i) is a set of nodes adjacent to node vi; ej,i
represents the edge from node j to node i; φ(l) and γ(l) are
differentiable functions; and AGG represents the aggregation
operation. From the perspective of the whole graph, message-
passing GNNs can also be regarded as conducting propaga-
tion on the message matrix M which can be presented as fol-
lows:

M(l) = K(l)H(l) (2)

where K(l) ∈ Rk×n comprises one-hot row vectors and each
row vector indicates the source node of the message; H(l) is
the hidden representations of the l-th layer and H(0) = X.

4 Our Approach
In this section, we introduce our proposed DropMessage,
which can be applied to all message-passing GNNs. We first
describe the details of our approach, and further prove that
the most common existing random dropping methods, i.e.,
Dropout, DropEdge and DropNode, can be unified into our
framework. Based on that, we give a theoretical explanation
of the effectiveness of these methods. After that, we theo-
retically analyze the superiority of DropMessage in terms of
stabilizing the training process and keeping information di-
versity. Finally, we derive a theoretical upper bound to guide
the selection of dropping rate δ.

4.1 DropMessage

Algorithm description. Different from existing random
dropping methods, DropMessage performs directly on the
message matrix M instead of the feature matrix or the ad-
jacency matrix. More specifically, DropMessage conducts
dropping on the message matrix with the dropping rate δ,
which means that δ|M| elements of the message matrix will
be masked in expectation. Formally, this operation can be

Table 1: Overview of different random dropping methods in a view
of Bernoulli sampling process.

Method Formula

Dropout X̃i,j = εXi,j

DropEdge Ãi,j = εAi,j

DropNode X̃i = εXi

DropMessage M̃i,j = εMi,j

s.t. ε ∼ Bernoulli(1− δ)

regarded as a sampling process. For each element Mi,j in
the message matrix, we generate an independent mask εi,j
to determine whether it will be preserved or not, according
to a Bernoulli distribution εi,j ∼ Bernoulli(1 − δ). Then,
we obtain the perturbed message matrix M̃ by multiplying
each element with its mask. Finally, we scale M̃ with the
factor of 1

1−δ to guarantee that the perturbed message matrix
is equal to the original message matrix in expectation. Thus,
the whole process can be expressed as M̃i,j =

1
1−δ εi,jMi,j ,

where εi,j ∼ Bernoulli(1 − δ). The applied GNN model
then propagates information via the perturbed message ma-
trix M̃ instead of the original message matrix. It should be
moted that DropMessage only affects on the training process.

Unifying random dropping methods. As we have men-
tioned above, DropMessage differs from existing methods by
directly performing on messages instead of graphs. However,
in intuition, the dropping of features, edges, nodes or mes-
sages will all eventually act on the message matrix. It in-
spires us to explore the theoretical connection between dif-
ferent dropping methods. As a start, we demonstrate that
Dropout, DropEdge, DropNode, and DropMessage can all be
formulated as Bernoulli sampling processes in Table 1. More
importantly, we find that existing random dropping methods
are actually special cases of DropMessage, and thus can be
expressed in a uniform framework.

Lemma 1. Dropout, DropEdge, DropNode, and DropMes-
sage perform random masking on the message matrices in
accordance with certain rules.

We provide the equivalent operation on the message matrix
of each method below.

Dropout. Dropping the elements Xdrop = {Xi,j |εi,j = 0}
in the feature matrix X is equivalent to masking elements
Mdrop = {Mi,j |source(Mi,j) ∈ Xdrop} in the message ma-
trix M, where source(Mi,j) indicates which element in the
feature matrix that Mi,j corresponds to.

DropEdge. Dropping the elements Edrop = {Ei,j |Ai,j =
1 and εi,j = 0} in the adjacency matrix A is equivalent to
masking elements Mdrop = {Mi|edge(Mi) ∈ Edrop} in the
message matrix M, where edge(Mi) indicates which edge
that Mi corresponds to.

DropNode. Dropping the elements Vdrop = {Xi|εi = 0}
in the feature matrix X is equivalent to masking elements
Mdrop = {Mi|node(Mi) ∈ Vdrop} in the message matrix M,
where node(Mi) indicates which row in the feature matrix
that Mi corresponds to.

DropMessage. This method directly performs random mask-
ing on the message matrix M.

According to above descriptions, we find DropMessage
conduct finest-grained masking on the message matrix, which
makes it the most flexible dropping method, and other meth-
ods can be regarded as a special form of DropMessage.
Theoretical explanation of effectiveness. Previous studies
have explored and explained why random dropping works in
the filed of computer vision Wager et al. [2013]; Wan et al.
[2013]. However, to the best of our knowledge, the effective-
ness of random dropping on GNNs has not been studied yet.
To fill this gap, based on the unified framework of existing
methods, we next provide a theoretical analysis.
Theorem 1. Unbiased random dropping on GNNs methods
introduce an additional regularization term into the objective
functions, which makes the models more robust.

Proof. For analytical simplicity, we assume that the down-
stream task is a binary classification and we apply a single
layer GCN Kipf and Welling [2017] as the backbone model,
which can be formulated as H = BMW, where M de-
notes the message matrix, W denotes the transformation ma-
trix, B ∈ Rn×k indicates which messages should be aggre-
gated by each node and B is its normalized form. Also, we
adopt sigmoid as non-linear function and present the result
as Z = sigmoid(H). When we use cross-entropy as loss
function, the objective function can be expressed as follows:

LCE =
∑

j,yj=1

log(1 + e−hj) +
∑

k,yk=0

log(1 + ehk) (3)

When performing random dropping on graphs, we use the
perturbed message matrix M̃ instead of the original message
matrix M. Thus, the objective function in expectation can be
expressed as follows:

E(L̃CE) = LCE +
∑
i

1

2
zi(1− zi)V ar(h̃i) (4)

More details of the derivation can be found in Appendix.
As shown in Equation 4, random dropping methods on graphs
introduce an extra regularization to the objective function.
For binary classification tasks, this regularization enforces the
classification probability approach to 0 or 1, thus a clearer
judgment can be obtained. By reducing the variance of h̃i,
random dropping methods motivate the model to extract more
essential high-level representations. Therefore, the robust-
ness of the models is enhanced.

4.2 Advantages of DropMessage
We give two additional analysis to demonstrate the advan-
tages of DropMessage on two aspects: stabilizing the training
process and keeping diverse information.
Reducing sample variance. All random dropping meth-
ods are challenged by the problem of unstable training pro-
cess. As existing works suggest, it is caused by the random
noises introduced into each training epoch. These noises then
add the difficulty of parameter coverage and the unstability of
training process. Generally, sample variance can be used to
measure the degree of stability. According to Table 1, the

input of each training epoch can be regarded as a random
sample of the whole graph, and the sample variance is cal-
culated by the average difference of every two independent
samples. Compared with other random dropping methods,
DropMessage effectively alleviates the aforementioned prob-
lem by reducing the sample variance.
Theorem 2. DropMessage presents the smallest sample vari-
ance among existing random dropping methods on message-
passing GNNs with the same dropping rate δ.

We leave the proof in Appendix. Intuitively, DropMessage
independently determines whether an element in the mes-
sage matrix is masked or not, which is exactly the small-
est Bernoulli trail for random dropping on the message ma-
trix. By reducing the sample variance, DropMessage dimin-
ishes the difference of message matrices among distinct train-
ing epochs, which stabilizes the training process and expe-
dites the convergence. The reason why DropMessage has
the minimum sample variance is that it is the finest-grained
random dropping method for GNN models. When apply-
ing DropMessage, each element Mi,j will be independently
judged that whether it should be masked.
Keeping diverse information. In the following, we com-
pare different random dropping methods with their degree of
losing information diversity, from the perspective of informa-
tion theory.
Definition 1. The information diversity consists of feature di-
versity and topology diversity. Feature diversity is defined as
the total number of preserved feature dimensions from dis-
tinct source nodes; topology diversity is defined as the total
number of directed edges propagating at least one dimension
message.

With the above definition, we claim that a method pos-
sesses the ability of keeping information diversity only un-
der the condition where neither the feature diversity nor the
topology diversity decreases after random dropping.
Lemma 2. None of Dropout, DropEdge, and DropNode is
able to keep information diversity.

According to Definition 1, when we drop an element of the
feature matrix X, all corresponding elements in the message
matrix are masked and the feature diversity is decreased by 1.
When we drop an edge in adjacency matrix, the correspond-
ing two rows for undirected graphs in the message matrix are
masked and the topology diversity is decreased by 2. Simi-
larly, when we drop a node, i.e., a row in the feature matrix,
elements in the corresponding rows of the message matrix are
all masked. Both the feature diversity and the topology diver-
sity are therefore decreased. Thus, for all of these methods,
their feature and topology information cannot be completely
recovered by propagated messages, leading to the loss of in-
formation diversity.
Theorem 3. DropMessage can keep information diversity in
expectation when δi ≤ 1−min(1

di
, 1c), where δi is the drop-

ping rate for node vi, di is the out-degree of vi, and c is the
feature dimension.

Proof. DropMessage conducts random dropping directly on
message matrix M. To keep the diversity of the topology

information, we expect that at least one element of each row
in message matrix M can be preserved in expectation:

E(|Mf |) ≥ 1⇒ (1− δ)c ≥ 1⇒ δ ≤ 1− 1

c
(5)

To keep the diversity of the feature information, we expect
that for every element in the feature matrix X, at least one
of its corresponding elements in the message matrix M is
preserved in expectation:

E(|Me|) ≥ 1⇒ (1− δi)di ≥ 1⇒ δi ≤ 1− 1

di
(6)

Therefore, to keep the information diversity, the dropping
rate δi should satisfy both Equation 5 and Equation 6 as

δi ≤ 1−min(1
di
,
1

c
) (7)

From the perspective of information theory, a random
dropping method with the capability of keeping information
diversity can preserve more information and theoretically per-
form better than those without such capability. Thus, it can
explain why our method performs better than those existing
dropping methods. Actually, we may only set one dropping
rate δ for the whole graph rather than for each node in prac-
tice. Consequently, both DropMessage and other methods
may lose some information. However, DropMessage still pre-
serves more information than other methods with the same
dropping rate even under this circumstance. It is demon-
strated that DropMessage remains its advantage in real-world
scenarios.

5 Experiments
5.1 Experimental Setup
We empirically validate the effectiveness and adaptability of
our proposed DropMessage in this section. In particular, we
explore the following questions: 1) Does DropMessage out-
perform other random dropping methods on GNNs? 2) Could
DropMessage further improve the robustness and training ef-
ficiency of GNNs? 3) Does information diversity (described
in Definition 1) matter in GNNs?
Datasets. We employ 7 graph datasets in our experiments,
including 5 public datasets Cora, CiteSeer, PubMed, ogbn-
arxiv, Flickr and 2 industrial datasets FinV, Telecom. See data
descriptions and statistics in Appendix.
Baseline methods. We compare our proposed DropMes-
sage with other existing random dropping methods, including
Dropout Hinton et al. [2012], DropEdge Rong et al. [2019],
and DropNode Feng et al. [2020]. We adopt these dropping
methods on various GNNs as the backbone model, and com-
pare their performances on different datasets.
Backbone models. In this paper, we mainly consider
three mainstream GNNs as our backbone models: GCN Kipf
and Welling [2017], GAT Velickovic et al. [2018], and
APPNP Klicpera et al. [2019]. We take the official practice of
these methods while make some minor modifications. More
implementation details can be found in Appendix.

5.2 Comparison Results
Table 2 summarizes the overall results. For the node classifi-
cation task, the performance is measured by accuracy on five
public datasets as their label distributions are rather balanced.
As for the two imbalanced industrial datasets, we employ F1
scores. When it comes to the link prediction task, we calcu-
late the AUC values for comparisons.

Effect of random dropping methods. It is observed that
random dropping methods consistently outperform GNNs
without random dropping in both node classification and link
prediction. Besides, we see that the effects of random drop-
ping methods vary over different datasets, backbone models,
and downstream tasks. For example, random dropping meth-
ods on APPAP obtain an average accuracy improvement of
1.4% on CiteSeer, while 0.1% on PubMed. Meanwhile, ran-
dom dropping methods achieve 2.1% accuracy improvement
for GCN on Cora, while only 0.8% for GAT.

Comparison of different dropping methods. Our pro-
posed DropMessage works well in all settings, exhibiting its
strong adaptability to various scenarios. Overall, we have
21 settings under the node classification task, each of which
is a combination of different backbone models and datasets
(e.g., GCN-Cora). It is showed that DropMessage achieves
the optimal results in 15 settings, and gets sub-optimal re-
sults in the rest. As to 9 setttings under the link predic-
tion task, DropMessage achieves the optimal results in 5 set-
tings, and sub-optimal results in the rest. Moreover, the sta-
ble performance of DropMessage over all datasets compared
to other methods is clearly presented. Taking DropEdge as
the counterexample, it appears strong performance on indus-
trial datasets but demonstrates a clear drop on public ones. A
reasonable explanation is that the message matrix patterns re-
served by distinct mask methods vary from each other as pre-
sented in Table 1. With the favor of its finest-grained drop-
ping strategy, DropMessage obtains smaller inductive bias.
Thus, compared with other methods, DropMessage is more
applicable in most scenarios.

5.3 Additional Results

Robustness analysis. We study the robustness of drop-
ping methods through measuring their ability of handling per-
turbed graphs. To guarantee that the initial data is compara-
tively clean, we conduct experiments on three citation net-
works: Cora, CiteSeer, and PubMed. We randomly add a cer-
tain ratio of edges into these datasets and perform the node
classification. We find that all the random dropping meth-
ods have positive effects when the perturbation rate increases
from 0% to 30%. The average improvement in the case of
30% perturbation reached 37% compared to that without per-
turbation, which indicates that the random dropping meth-
ods strengthen the robustness of GNN models. Besides, our
proposed DropMessage shows its versatility and outperforms
other dropping methods in noisy situations. Detailed results
are exhibited in Appendix.

Over-smoothing analysis. Over-smoothing is a common
issue on GNNs Li et al. [2018b], which implies that the
node representations become indistinguishable as the net-

Table 2: Comparison results of different random dropping methods. The best results are in bold, while the second-best ones are underlined.

Model
Task & Dataset Node classification Link prediction

Cora CiteSeer PubMed ogbn-arxiv Flickr Telecom FinV Cora CiteSeer PubMed

GCN 80.68 70.83 78.97 70.08 51.88 0.6080 0.4220 0.9198 0.8959 0.9712
GCN-Dropout 83.16 71.48 79.13 71.16 52.22 0.6601 0.4526 0.9278 0.9107 0.9766

GCN-DropEdge 81.69 71.43 79.06 70.88 52.14 0.6650 0.4729 0.9295 0.9067 0.9762
GCN-DropNode 83.04 72.12 79.00 70.98 52.13 0.6243 0.4571 0.9238 0.9052 0.9748

GCN-DropMessage 83.33 71.83 79.20 71.27 52.23 0.6710 0.4876 0.9305 0.9071 0.9772
GAT 81.35 70.14 77.20 70.32 49.88 0.7050 0.4467 0.9118 0.8895 0.9464

GAT-Dropout 82.41 71.31 78.31 71.28 49.98 0.7382 0.4539 0.9182 0.9055 0.9536
GAT-DropEdge 81.82 71.17 77.70 70.67 50.04 0.7568 0.4896 0.9206 0.9037 0.9493
GAT-DropNode 82.08 71.44 77.98 70.96 49.92 0.7214 0.4647 0.9224 0.9104 0.9566

GAT-DropMessage 82.20 71.48 78.14 71.13 50.13 0.7574 0.4861 0.9216 0.9076 0.9553

APPNP 81.45 70.62 79.79 69.11 50.47 0.6217 0.3952 0.9058 0.8844 0.9531
APPNP-Dropout 82.23 71.93 79.92 69.36 50.55 0.6578 0.4023 0.9119 0.9071 0.9611

APPNP-DropEdge 82.75 72.10 79.83 69.15 50.61 0.6591 0.4149 0.9139 0.9131 0.9626
APPNP-DropNode 81.79 71.50 79.81 69.27 50.53 0.6412 0.4182 0.9068 0.8979 0.9561

APPNP-DropMessage 82.37 72.65 80.04 69.72 50.72 0.6619 0.4378 0.9165 0.9141 0.9634

1 2 3 4 5 6 7 8
Layer

0

20

40

60

80

 M
A

D
G

ap
 (%

) GCN-Dropout
GCN-DropEdge
GCN-DropNode
GCN-DropMessage

(a) MADGap

1 2 3 4 5 6 7 8
Layer

0

10

20

30

40

 A
cc

ur
ac

y
(%

)

(b) Test Accuracy
Figure 2: Over-Smoothing Analysis.

work depth increases. In this part, we evaluate the effects
that various random dropping methods exert on this issue, and
measure the degree of over-smoothing by MADGap Chen et
al. [2020]. It should be noted that here a smaller value in-
dicates the more indistinguishable node representations and
vice versa. Experiments are conducted on Cora with GCNs
serving as backbone models. Figure 2 shows the relative in-
crease of MADGap values and test accuracies of the final
node representations compared to the original model without
any random dropping techniques. The results indicate that all
these random dropping methods can alleviate over-smoothing
by increasing the MADGap values and test accuracies when
the depth of the model increases. Among all random drop-
ping methods, our proposed DropMessage exhibits a superi-
ority of consistency. It obtains an average improvement of
3.3% on MADGap values and an average improvement of
4.9% on test accuracies compared to other random dropping
methods when the layer number l ≥ 3. This result can be ex-
plained by the fact that DropMessage can generate more var-
ious messages than other methods, which prevents the nodes
from converging to the same representations to some extent.

Training process analysis. We conduct experiments to ana-
lyze the loss during the training process when employing dif-
ferent random dropping methods. The experimental results
(see details in Appendix) suggest that DropMessage presents
the smallest sample variance among all methods, thus achiev-
ing the fastest convergence and the most stable performance.

This is consistent with the theoretical results in Section 4.2.
Information diversity analysis. We conduct experiments to

Table 3: Classification accuracy (%) for information diversity anal-
ysis (where AVG denotes average, and NW denotes nodewise).

Model
GCN GAT APPNP

AVG NW AVG NW AVG NW

Accuracy (%) 81.62 82.67 80.81 81.61 80.71 81.56

evaluate the importance of information diversity for message-
passing GNN models. We set Cora as our experimental
dataset, which contains 2708 nodes and 5429 edges. The av-
erage node degree of Cora is close to 4. According to Equa-
tion 7, the upper bound of dropping rate is calculated from
the node degree and the feature dimension. The feature di-
mension number of Cora is 1433, which is much larger than
the number of node degree. Therefore, the upper bound is
only determined by the degree of the node. In (backbone)-
nodewise settings, we set the dropping rate to be equal to its
upper bound δi = 1 − 1

di
for each node. In (backbone)-

average settings, we set the dropping rate δi = 0.75 + εi,
where εi ∼ Uniform(−0.15, 0.15). Both of these settings
employ DropMessage. The average random dropping rate of
all nodes is almost identical under these two settings, but only
the former one can keep the information diversity in expecta-
tion. Table 3 presents the results. The (backbone)-nodewise
settings outperform (backbone)-average settings regardless of
which backbone model is selected. The results indicate the
importance of keeping information diversity.

6 Conclusion
In this paper, we propose DropMessage, a general random
dropping method for message-passing GNN models. We first
unify all random dropping methods to our framework via per-
forming dropping on the message matrix and analyzing their
effects. Then we illustrate the superiority of DropMessage
theoretically in stabilizing the training process and keeping

information diversity. Due to its fine-grained dropping opera-
tions on the message matrix, DropMessage shows greater ap-
plicability in most cases. By conducting experiments for mul-
tiple tasks on five public datasets and two industrial datasets,
we demonstrate the effectiveness and generalization of our
proposed method.

References
Yaser S Abu-Mostafa. Learning from hints in neural net-

works. Journal of complexity, 6(2):192–198, 1990.

Ferhat Alkan and Cesim Erten. Rednemo: topology-based
ppi network reconstruction via repeated diffusion with
neighborhood modifications. volume 33, pages 537–544,
2017.

James Atwood and Don Towsley. Diffusion-convolutional
neural networks. 2015.

Sambaran Bandyopadhyay, N Lokesh, and M Narasimha
Murty. Outlier aware network embedding for attributed
networks. In AAAI, volume 33, pages 12–19, 2019.

Charles M. Bishop. Training with noise is equivalent to
tikhonov regularization. Neural Computation, 7:108–116,
1995.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Be-
yond low-frequency information in graph convolutional
networks. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 3950–3957, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are
graph attention networks? ArXiv, abs/2105.14491, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks on
graphs. 2013.

C. Burges and B. Schölkopf. Improving the accuracy and
speed of support vector machines. In NIPS, 1996.

Carlo Vittorio Cannistraci, Gregorio Alanis-Lobato, and Tim-
othy Ravasi. Minimum curvilinearity to enhance topolog-
ical prediction of protein interactions by network embed-
ding. volume 29, pages i199–i209, 2013.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training
of graph convolutional networks with variance reduction.
2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning
with graph convolutional networks via importance sam-
pling. arXiv preprint arXiv:1801.10247, 2018.

Deli Chen, Yankai Lin, W. Li, Peng Li, Jie Zhou, and Xu Sun.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In AAAI,
2020.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. 2016.

Ming Ding, Jie Tang, and Jie Zhang. Semi-supervised learn-
ing on graphs with generative adversarial nets. In CIKM,
pages 913–922, 2018.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo
Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, and Jie
Tang. Graph random neural networks for semi-supervised
learning on graphs. NeurIPS, 33, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In ICML, pages 1263–1272, 2017.

Roger Guimerà and Marta Sales-Pardo. Missing and spurious
interactions and the reconstruction of complex networks.
In PNAS, volume 106, pages 22073–22078, 2009.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In NeurIPS, pages
1024–1034, 2017.

Geoffrey E. Hinton, Nitish Srivastava, A. Krizhevsky, Ilya
Sutskever, and R. Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors.
ArXiv, abs/1207.0580, 2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. arXiv preprint arXiv:2005.00687,
2020.

Yuriy Hulovatyy, Ryan W Solava, and Tijana Milenković.
Revealing missing parts of the interactome via link pre-
diction. volume 9, page e90073, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. 2016.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang,
and Jiliang Tang. Graph structure learning for robust graph
neural networks. arXiv preprint arXiv:2005.10203, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 2014.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. 2013.

Thomas N Kipf and Max Welling. Variational graph auto-
encoders. In ArXiv, volume abs/1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan
Günnemann. Predict then propagate: Graph neural net-
works meet personalized pagerank. In ICLR, 2019.

Chengwei Lei and Jianhua Ruan. A novel link prediction al-
gorithm for reconstructing protein–protein interaction net-
works by topological similarity. volume 29, pages 355–
364, 2013.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. 2015.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights
into graph convolutional networks for semi-supervised
learning. In AAAI, volume 32, 2018.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights
into graph convolutional networks for semi-supervised
learning. In AAAI, 2018.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A
pytorch library for adversarial attacks and defenses. arXiv
preprint arXiv:2005.06149, 2020.

Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan
Parthasarathy. Semi-supervised embedding in attributed
networks with outliers. In SDM, pages 153–161, 2018.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong,
Jingchao Ni, Haifeng Chen, and Xiang Zhang. Learning
to drop: Robust graph neural network via topological de-
noising. arXiv preprint arXiv:2011.07057, 2020.

L. V. D. Maaten, Minmin Chen, Stephen Tyree, and Kilian Q.
Weinberger. Learning with marginalized corrupted fea-
tures. In ICML, 2013.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. 2016.

Kiyotoshi Matsuoka. Noise injection into inputs in back-
propagation learning. IEEE Transactions on Systems, Man,
and Cybernetics, 22(3):436–440, 1992.

Miller McPherson, Lynn Smith-Lovin, and James M Cook.
Birds of a feather: Homophily in social networks. In An-
nual review of sociology, volume 27, pages 415–444, 2001.

Hoang NT, Choong Jun Jin, and Tsuyoshi Murata. Learning
graph neural networks with noisy labels. arXiv preprint
arXiv:1905.01591, 2019.

Akifumi Okuno and Hidetoshi Shimodaira. Robust graph em-
bedding with noisy link weights. In AISTATS, pages 664–
673, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks ex-
ponentially lose expressive power for node classification.
arXiv: Learning, 2020.

Liming Pan, Tao Zhou, Linyuan Lü, and Chin-Kun Hu. Pre-
dicting missing links and identifying spurious links via
likelihood analysis. volume 6, pages 1–10, 2016.

Hongbin Pei, Bingzhen Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. Geom-gcn: Geometric graph convo-
lutional networks. In International Conference on Learn-
ing Representations, 2020.

Zhenyu Qiu, Wenbin Hu, Jia Wu, ZhongZheng Tang, and Xi-
aohua Jia. Noise-resilient similarity preserving network
embedding for social networks. In IJCAI, pages 3282–
3288, 2019.

Lakshmish Ramaswamy, Bugra Gedik, and Ling Liu. A dis-
tributed approach to node clustering in decentralized peer-
to-peer networks. In TPDS, volume 16, pages 814–829,
2005.

S. Rifai, Yann Dauphin, Pascal Vincent, Yoshua Bengio, and
X. Muller. The manifold tangent classifier. In NIPS, 2011.

S. Rifai, Xavier Glorot, Yoshua Bengio, and Pascal Vincent.
Adding noise to the input of a model trained with a regu-
larized objective. ArXiv, abs/1104.3250, 2011.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolutional net-
works on node classification. In ICLR, 2019.

Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani.
Graph sparsification approaches for laplacian smoothing.
In Artificial Intelligence and Statistics, pages 1250–1259.
PMLR, 2016.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad. Collective classifi-
cation in network data. volume 29, pages 93–93, 2008.

Patrice Y Simard, Yann A LeCun, John S Denker, and
Bernard Victorri. Transformation invariance in pattern
recognition—tangent distance and tangent propagation. In
Neural networks: tricks of the trade, pages 239–274.
Springer, 1998.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a sim-
ple way to prevent neural networks from overfitting. vol-
ume 15, pages 1929–1958, 2014.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio’, and Yoshua Bengio. Graph atten-
tion networks. In International Conference on Learning
Representations, 2018.

Stefan Wager, Sida I. Wang, and Percy Liang. Dropout train-
ing as adaptive regularization. In NIPS, 2013.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Y. LeCun, and
R. Fergus. Regularization of neural networks using drop-
connect. In ICML, 2013.

Bo Wang, Armin Pourshafeie, Marinka Zitnik, Junjie
Zhu, Carlos D Bustamante, Serafim Batzoglou, and Jure
Leskovec. Network enhancement as a general method to
denoise weighted biological networks. Nature communi-
cations, 9(1):1–8, 2018.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph
information bottleneck. arXiv preprint arXiv:2010.12811,
2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. TNNLS, 2020.

Keyulu Xu, C. Li, Yonglong Tian, Tomohiro Sonobe,
K. Kawarabayashi, and S. Jegelka. Representation learn-
ing on graphs with jumping knowledge networks. In ICML,
2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? ICLR, 2019.

Jiarong Xu, Yang Yang, Chunping Wang, Zongtao Liu, Jing
Zhang, Lei Chen, and Jiangang Lu. Robust network en-
hancement from flawed networks. TKDE, 2020.

Y. Yang, Yuhong Xu, Chunping Wang, Yizhou Sun, Fei Wu,
Yueting Zhuang, and Ming Gu. Understanding default be-
havior in online lending. Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, 2019.

Y. Yang, Yuhong Xu, Yizhou Sun, Yuxiao Dong, Fei Wu, and
Y. Zhuang. Mining fraudsters and fraudulent strategies in
large-scale mobile social networks. IEEE Transactions on
Knowledge and Data Engineering, 33:169–179, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L Hamilton, and Jure Leskovec. Graph convo-
lutional neural networks for web-scale recommender sys-
tems. In SIGKDD, pages 974–983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, R. Kan-
nan, and V. Prasanna. Graphsaint: Graph sampling based
inductive learning method. ArXiv, abs/1907.04931, 2020.

Lingxiao Zhao and L. Akoglu. Pairnorm: Tackling over-
smoothing in gnns. ArXiv, abs/1909.12223, 2020.

Jing Zhao, Lili Miao, Jian Yang, Haiyang Fang, Qian-Ming
Zhang, Min Nie, Petter Holme, and Tao Zhou. Prediction
of links and weights in networks by reliable routes. vol-
ume 5, pages 1–15, 2015.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao
Ni, Wenchao Yu, Haifeng Chen, and Wei Wang. Robust
graph representation learning via neural sparsification. In
ICML, pages 11458–11468, 2020.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong
Sun. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

Xingquan Zhu and Xindong Wu. Class noise vs. attribute
noise: A quantitative study. In Artif Intell Rev, volume 22,
pages 177–210, 2004.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Ro-
bust graph convolutional networks against adversarial at-
tacks. In SIGKDD, pages 1399–1407, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
Adversarial attacks on neural networks for graph data. Pro-
ceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 2018.

7 Appendix
7.1 Derivation Details
Detailed proof of Theorem 1.
Theorem 1 Unbiased random dropping methods introduce
an extra regularization term into the objective functions,
which make the models more robust.

We give more derivation details of Theorem 1. When we
use cross-entropy as the loss function, the objective function
can be expressed as follows:

LCE = −
∑

j,yj=1

log(zj)−
∑

k,yk=0

log(1− zk)

=
∑

j,yj=1

log(1 + e−hj) +
∑

k,yk=0

log(1 + ehk)

According to above equation, the initial objective function
is LCE =

∑
j,yj=1 log(1 + e−hj) +

∑
k,yk=0 log(1 + ehk).

When we perturb the message matrix, the objective function

can be regarded as a process of adding a bias to the original
function, expressed as follows:

E(L̃CE) =
∑

j,yj=1

[log(1 + e−hj) + E(f(h̃j , hj))]

+
∑

k,yk=0

[log(1 + ehk) + E(g(h̃k, hk))]

where f(h̃j , hj) = log(1 + e−h̃j) − log(1 + e−hj), and
g(h̃k, hk) = log(1 + eh̃k) − log(1 + ehk). We can approx-
imate it with the second-order Taylor expansion of f(.) and
g(.) around hi. Thus, the objective function in expectation
can be expressed as bellow:

E(L̃CE) = LCE

+ E(
∑

j,yj=1

[(−1 + zj)(h̃j − hj) +
1

2
zj(1− zj)(h̃j − hj)

2])

+ E(
∑

k,yk=0

[zk(h̃k − hk) +
1

2
zk(1− zk)(h̃k − hk)

2])

= LCE +
∑
i

1

2
zi(1− zi)V ar(h̃i)

Proof of Theorem 2.
Theorem 2 DropMessage presents the smallest sample
variance among all existing random dropping methods on
message-passing GNNs with the same dropping rate δ.

Proof. As stated in Lemma 1, all random dropping meth-
ods on graphs can be converted to masking operations on the
message matrix M. We can measure the difference of mes-
sage matrices in different epochs by the way of comparing the
sample variance of random dropping methods, which can be
measured via the norm variance of the message matrix |M|F .
Without loss of generality, we assume the original message
matrix M is 1n×n, i.e., every element is 1. Thus, we can
calculate its sample variance via the 1-norm of the message
matrix.

We consider that the message-passing GNNs do not pos-
sess the node-sampler or the edge-sampler, which means ev-
ery directed edge corresponds to a row vector in the message
matrix M. For analytical simplicity, we assume that the graph
is undirected and the degree of each node is d. In this case,
k = 2|E| = nd rows of the message matrix counts in total.
All random dropping methods can be considered as multiple
independent Bernoulli samplings. The whole process con-
forms to a binomial distribution, and so we can calculate the
variance of |M|.
Dropout. Perform nc times of Bernoulli sampling. Drop-
ping an element in the feature matrix leads to masking d el-
ements in the message matrix. Its variance can be calculated
by V ardo(|M|) = (1− δ)δncd2.

DropEdge. Perform nd
2 times of Bernoulli sampling. Drop-

ping an element in the adjacency matrix leads to masking 2c
elements in the message matrix. Its variance can be calculated
by V arde(|M|) = 2(1− δ)δnc2d.
DropNode. Perform n times of Bernoulli sampling. Drop-
ping an element in the node set leads to masking cd elements

in the message matrix. Its variance can be calculated by
V ardn(|M|) = (1− δ)δnc2d2.
DropMessage. Perform ncd times of Bernoulli sampling.
Dropping an element in the message matrix leads to masking
1 elements in the message matrix. Its variance can be calcu-
lated by V ardm(|M|) = (1− δ)δncd.

Therefore, the variances of the random dropping methods
are sorted as follows:

V ardm(|M|) ≤ V ardo(|M|) ≤ V ardn(|M|)
V ardm(|M|) ≤ V arde(|M|)

Our DropMessage has the smallest sample variance among
all existing random dropping methods.

7.2 Experiment Details
Dataset descriptions. We give more details about the 7
datasets that are applied in our experiments.

• Cora, CiteSeer, PubMed, ogbn-arxiv: These 4 differ-
ent citation networks are widely used as graph bench-
marks Hu et al. [2020]; Sen et al. [2008]. We conduct
node classification tasks on each dataset to determine
the research area of papers/researchers. We also con-
sider link prediction on the first three graphs to predict
whether one paper cites another.

• Flickr: It is provided by Flickr, the largest photo-sharing
website Zeng et al. [2020]. One node in the graph repre-
sents one image uploaded to Flickr. If two images share
some common properties (e.g., same geographic loca-
tion, same gallery, or comments by the same user), an
edge between the nodes of these two images will appear.
We conduct the node classification task that aims to cat-
egorize these images into 7 classes determined by their
tags.

• FinV, Telecom: These are two real-world mobile com-
munication networks provided by FinVolution Group
Yang et al. [2019] and China Telecom Yang et al. [2021],
respectively. In the two datasets, nodes represent users,
and edges indicate the situation where two users have
communicated with each other at a certain frequency.
The task is to identify whether a user is a default bor-
rower or a telecom fraudster.

Dataset statistics. Table 4 shows the statistics of datasets.

Table 4: Dataset Statistics.

Dataset Nodes Edges Feature Classes

Cora 2708 5429 1433 7
CiteSeer 3327 4732 3703 6
PubMed 19717 44338 500 3

ogbn-arxiv 169343 1166243 128 40
Flickr 89250 899756 500 7
FinV 340751 1575498 261 2

Telecom 509304 809996 21 2

Backbone models. All these backbone models have ran-
dom dropping modules for different steps in their model im-
plementation. For instance, GAT models perform random

dropping after self-attention calculation, while APPNP mod-
els perform random dropping at the beginning of each itera-
tion. For a fair comparison, we unify the implementation of
random dropping modules in the same step for different back-
bone models. We fix Dropout, DropEdge and DropNode on
the initial input and fix DropMessage on the start point of the
message propagation process.
Implementation details. We conduct 20 independent exper-
iments for each setting and obtain the average results. We ad-
just the dropping rate from 0.1 to 0.9 in steps of 0.1 and select
the optimal one for each setting. On the five public datasets,
we continue to employ the same hyper-parameter settings as
previous works have proposed. And on the two real-world
datasets, we obtain the best parameters through careful tun-
ing.

As for public datasets Cora, CiteSeer, PubMed, and Flickr,
we apply two-layer models. However, when it comes to the
public dataset ogbn-arxiv and two industrial datasets, Tele-
com and FinV, we employ three-layer models with two batch
normalization layers between the network layers. These ex-
perimental settings are identical for node classification tasks
and link prediction tasks. The number of hidden units on
GCNs is 16 for Cora, CiteSeer, PubMed, and is 64 for oth-
ers. For GATs, we apply eight-head models with 8 hidden
units for Cora, CiteSeer, PubMed, and use single-head mod-
els with 128 hidden units for the other datasets. As for APP-
NPs, we use the teleport probability α = 0.1 and K = 10
power iteration steps. The number of hidden units on APP-
NPs is always 64 for all datasets. In all cases, we use Adam
optimizers with learning rate of 0.005 and L2 regularization
of 5× 10−4, and train each model 200 epochs.
Results of robustness analysis. Table 5 summarizes the
classification accuracy of robustness analysis.
Results of training process analysis. Figure 3 shows the

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

GCN-Clean
GCN-DropEdge
GCN-Dropout
GCN-DropNode
GCN-DropMessage

Figure 3: Training Process Analysis.

change of loss in GCN training processes when employing
different random dropping methods on Cora. Furthermore,
the similar training loss curves can be drawn under other ex-

Table 5: Classification accuracy (%) for robustness analysis.

Model
Dataset Cora CiteSeer PubMed

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

GCN 80.68 78.51 76.72 75.36 70.83 68.66 66.32 65.15 78.97 75.55 73.18 72.11
GCN-Dropout 83.16 80.97 78.17 76.83 71.48 69.86 67.35 66.08 79.13 76.94 74.94 74.07

GCN-DropEdge 81.69 79.45 77.47 76.44 71.43 69.60 67.26 66.14 79.06 76.57 74.88 73.93
GCN-DropNode 83.04 80.13 78.12 76.72 72.12 70.51 68.21 66.94 79.00 76.74 74.71 73.86

GCN-DropMessage 83.33 81.04 79.09 77.26 71.83 70.08 67.61 66.49 79.20 77.10 75.02 74.11
GAT 81.35 78.14 76.48 74.56 70.14 67.51 64.99 63.65 77.20 75.05 72.81 71.59

GAT-Dropout 82.41 80.20 78.71 77.23 71.31 68.38 66.84 64.92 78.31 76.05 74.14 72.88
GAT-DropEdge 81.82 79.08 76.92 75.32 71.17 69.07 67.21 65.31 77.70 75.92 74.02 72.73
GAT-DropNode 82.08 78.80 76.98 75.84 71.44 68.57 66.42 64.68 77.98 75.87 73.57 72.38

GAT-DropMessage 82.20 79.70 78.11 76.53 71.48 69.24 67.47 65.49 78.14 76.20 74.22 72.97
APPNP 81.45 77.75 75.61 73.54 70.62 65.76 62.60 60.92 79.79 75.29 72.77 71.06

APPNP-Dropout 82.23 79.06 76.55 74.30 71.93 66.55 63.22 61.61 79.92 76.45 74.12 72.17
APPNP-DropEdge 82.75 78.90 76.63 74.68 72.10 66.58 63.27 61.77 79.83 76.72 74.17 72.21
APPNP-DropNode 81.79 78.17 75.79 73.76 71.50 65.86 63.01 61.01 79.81 76.45 74.05 72.01

APPNP-DropMessage 82.37 79.12 76.60 74.59 72.65 66.74 63.25 61.59 80.04 76.73 74.25 72.25

perimental settings.

	1 Introduction
	2 Related Work
	3 Notations and Preliminaries
	4 Our Approach
	4.1 DropMessage
	4.2 Advantages of DropMessage

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparison Results
	5.3 Additional Results

	6 Conclusion
	7 Appendix
	7.1 Derivation Details
	7.2 Experiment Details

